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more direct than standard derivations using element shape
functions and energy minimization [17]. In Section 3 thePrevious numerical models of planar Hall probes using finite-

difference and finite-element methods were limited to open bound- model is extended to include the effects of magnetic force.
aries parallel to the coordinate axes. This paper derives the finite- The law of current conservation leads to a set of linear
element equations on a conformal triangular mesh directly from equations that relate the potential of each mesh point to
the law of current conservation. The treatment shows that the Hall

the values at neighboring points and the local injectioncondition for general curved boundaries is inherent in the equations
current. The equations can be solved by matrix inversionand can be implemented in numerical programs with little effort.

Results are presented from a code that can handle spatial variations or relaxation. Section 4 discusses implementation of the
of magnetic field, layer thickness, volume resistivity, and the Hall method in a computer code.
coefficient in probes of any shape. Q 1996 Academic Press, Inc. Figure 1 illustrates some design capabilities of the model.

The computational region represents a thin layer of a ho-
mogenous n-type material with a 16.78 Hall angle. There1. INTRODUCTION
are driving electrodes at the right and left boundaries. The
circles at the top and bottom center are conducting contactSemiconductor magnetic field sensors, or Hall-effect
pads. The triangles that constitute the mesh (Fig. 1a) con-probes [1], have extensive applications in industry and
form to the material boundaries and allow enhanced reso-research [2–4]. There is a substantial body of work on
lution in the regions around the pads. Figure 1b showsnumerical modeling of probe characteristics using finite-
equipotential lines of the solution with the pads connecteddifference equations and finite-element methods [5–14].
to an open circuit. There is a smooth transition from theBecause the finite-difference formulation is tied to the
Dirichlet condition on the side boundaries to the Hallcoordinate system, these models are constrained to simple
boundaries. The lines intersect open boundaries at the Hallgeometries with boundaries parallel to the coordinate axes
angle, even in regions of strong curvature. Finally, Fig. 1c[15, 16]. Finite-element methods applied over conformal
shows the effect of strong circuit loading between the pads,triangular meshes have removed this restriction in many
approximately halving the measured voltage.areas of applied electromagnetism [17–20]. Although past

finite-element treatments of Hall probes could address ar-
2. FINITE-ELEMENT FORM OF POISSON’S EQUATIONbitrary variations of magnetic field and material properties

FROM GAUSS’S LAWthrough the material volume, the models were limited to
straight Hall boundaries along the axes. The current paper

To introduce methods to treat Hall boundaries of a con-shows that the Hall condition proceeds naturally from the
ductive medium, we shall first review the derivation of thefinite-element equations and can be implemented easily
familiar finite-difference equations for electrostatics usingon curved boundaries. The formulation allows mixed Dir-
the Gauss’ law approach of Refs. [21] and [22]. Considerichlet, Neumann, and Hall conditions on external or inter-
the solution of the Poisson equationnal boundaries of any shape. Furthermore, the model can

represent steady-state spatial variations of magnetic field,
= ? (« =f) 5 2q. (1)conductivity, Hall coefficient, and layer thickness.

In this paper, the finite-element equations for a planar
Hall region are derived directly from the condition of cur- In Eq. (1), the quantity f is the electrostatic potential, «
rent conservation over volumes surrounding each point of is the spatially varying dielectric constant, and q is the
a triangular mesh. As an introduction, Section 2 reviews space-charge density. The finite-difference approach rep-
the finite-element equations for electrostatics that follow resents the differential equation at a point by difference

operators. In contrast, the finite-element method appliesfrom a local application of Gauss’s law. The approach is
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FIG. 2. Reference mesh vertex surrounded by six triangles and six
neighboring vertices. Dashed line shows Gauss’s law surface integra-
tion path.

rounded with varying numbers of triangles. The referenceFIG. 1. Example, finite-element Hall probe model: height in y direc-
tion, 40 em; length in x-direction, 100 em; thickness, 1 em; Bz , 100 G. numbers of the points and triangles are assigned in a posi-
Region 1, Conductive material with Kh 5 23.0 3 1024 V ? cm/G ? A, tive rotational sense. The material quantities « and q are
r 5 0.1 V ? cm; region 2, fixed potential, 0.0 mV; region 3, fixed potential, taken as constant over the volume of each element. The
10.0 mV; region 4, top sensor pad, r 5 0.005 V ? cm; region 5, bottom

electrostatic potential is approximated by a discrete func-sensor pad, r 5 0.005 V ? cm. (a) Conformal triangle mesh with 3600
tion F defined at the vertices. A first-order treatment as-elements, (b) equipotential lines of solution (0.25 mV interval, with an

open circuit between the sensor pads (Regions 4 and 5), (c) equipotential sumes a linear variation of potential over each element.
lines with 620 V load between the sensor pads. The electric field is therefore constant in a triangle. To

derive a difference equation relating the reference poten-
tial F0 to neighboring values, Eq. (2) is applied around
the dashed curve of Fig. 2 for a volume with height w inintegral relationships over small volumes of the solution
the z direction. The curve connects the midpoints of thespace. The electrostatic equations follow from Gauss’s law,
lines between vertices to the mass centers of the elements.
It therefore encloses one-third of the area of each triangle.EE «E ? dS 5 EEE q dV. (2)
We can immediately write an expression for the right-hand
side of Eq. (2),

The electric field of Eq. (2) is related to the electrostatic
potential by E 5 2=f. The quantity on the left is the
integral of the normal electric field over a closed surface O6

i51

qi Aiw
3

. (3)
surrounding the volume indicated by the integral on the
right-hand side.

Consistent with the planar Hall probe application, Eq. Here, the quantities Ai are the areas of the surrounding
triangles in the x–y plane.(2) will be applied to a two-dimensional geometry where

quantities vary only in x and y. The computational region Evaluation of the surface integral (from Eq. (2) is more
involved. To illustrate the method, consider the integralof the x–y plane is divided into triangular elements as in

Fig. 1. The vertices of the triangles are called mesh points over the portion of the surface inside Triangle 2 of Fig. 2.
Figure 3 shows the geometry of the triangle. For conve-and the collection is called the computational mesh. Figure

2 shows a detail of a reference vertex surrounded by trian- nience, we define a coordinate system with origin at the
reference vertex position. In this system, points 1 and 2gles defined by neighboring vertices. The point has six

nearest neighbors. The following discussion can easily be have the coordinates (x1 , y1) and (x2 , y2). The area of the
triangle isextended to generalized meshes where points are sur-
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of Fig. 2, the contribution to the Gauss’s law integral from
Triangle 2 can be written as

EE «2E2 ? n dS 5
w«2[(E2 3 La) 1 (E2 3 Lb)]

z
(8)

5
w«2(E2 3 L)

z
.

The vectors La , Lb , and L are defined in Fig. 3. Inspection
of the figure shows that the vector L is related to the vertex
coordinates by

L 5
(x2 2 x1)

2
x 1

(y2 2 y1)
2

y. (9)

Substituting Eqs. (6), (7), and (9) into Eq. (8) gives the
FIG. 3. Detailed view of Triangle 2 of Fig. 2, showing the Gauss’s contribution from Triangle 2 as

law surface integration path.

«2w[2F0(y2 2 y1) 1 F1y2 1 F2 y1](y2 2 y1)
4A2

(10)
A2 5

(x1y2 2 x2 y1)
2

. (4)
2

«2w[2F0(x2 2 x1) 1 F1 x2 1 F2 x1](x2 2 x1)
4A2

.

The cotangents shown in the figure can be written in terms
Equation (10) can be simplified using the coordinate-inde-of the coordinates as
pendent cotangent expressions of Eq. (5),

cot u2a 5
2y1(y2 2 y1) 2 x1(x2 2 x1)

2A2
(5) (w«2)[F0(cot u2b 1 cot u2a) 2 F1 cot u2b 2 F2 cot u2a].

(11)

and
The full surface integral is the sum of Eq. (11) plus similar
expressions for the other five triangles. Equating the result
with the expression of Eq. (3) and solving for F0 gives thecot u2b 5

y2(y2 2 y1) 1 x2(x2 2 x1)
2A2

.
following succinct form of Gauss’s law:

If the potential varies linearly over the triangle as
F0 5

o6
i51 WiFi 1 o6

i51(qi Ai)/3

o6
i51 Wi

. (12)
f2(x, y) 5 F0 1 ux 1 vy,

The coupling coefficients in Eq. (12) are given bythen the constant electric field in the triangle is

E2 5 ux 1 vy. (6)
W1 5

(«2 cot u2b 1 «1 cot u1a)
2

,

The constants in Eq. (6) are related to the vertex potentials
and coordinates as W2 5

(«3 cot u3b 1 «2 cot u2a)
2

,

? ? ?
(13)u 5

2F0(y2 2 y1) 1 F1y2 2 F2 y1

2A2
,

(7)
W6 5

(«1 cot u1b 1 «6 cot u6a)
2

.
v 5

F0(x2 2 x1) 2 F1 x2 1 F2 x1

2A2
.

The coupling coefficient to a neighboring mesh point de-
pends on the dielectric constants and geometries of theIf n is a unit vector pointing outward from the surface



FINITE-ELEMENT MODELING OF HALL EFFECT PROBES 441

and dielectric constants in the external triangles are set to
zero and the external vertices are assigned arbitrary values
of potential. Finally, during the solution the potentials at
the external vertices are not updated and the Neumann
boundary points are treated like any internal point. Thus,
there is no need to apply special routines to the boundaries,
simplifying the coding task.

3. FINITE-ELEMENT EQUATIONS FOR HALL PROBE
REGIONS AND BOUNDARIES

A Hall probe consists of a thin sheet of metal or semicon-
ductor deposited on an insulating substrate. Electrodes onFIG. 4. Gauss’s law integration path for a reference mesh vertex on
the ends drive a current through the sheet. If there isa Neumann boundary. Triangles 2 and 3 are inside the medium, while

Triangles 1, 4, 5, and 6 are outside. The Neumann boundary lies on the a component of magnetic field normal to the sheet, the
lines from vertex 3 to 0 and vertex 0 to 1. conduction particles feel a transverse force. Charge dis-

placement creates a transverse electric field that allows the
particles to travel along approximately straight line paths
between the electrodes. Detection of the voltage associatedtriangles on each side of the connecting line. Equation (12)
with the transverse electric field gives a measurement ofrepresents a set of coupled linear equations, one for each
the magnetic field. In this report, the discussion is limitedvertex of the mesh.
to the Hall equations in the regime discussed in Refs. 1 andA specialized Neumann boundary has the normal deriv-
5. An n-type material is assumed where minority carrierative of potential equal to zero. This condition implies that
transport and concentration gradients can be neglected.the electric field is parallel to the surface. The Neumann
If variations in the electric and magnetic fields are slowboundary, often used to represent symmetry planes in elec-
compared with the electron transit time, a steady-statetrostatic problems, is difficult to handle in finite-difference
solution is sufficient. In this case, the governing equa-treatments except along straight boundaries. In contrast,
tions arethe specialized Neumann condition is implicit in the finite-

element method [20] for boundaries of any shape. This
= ? J 5 S (14)property can easily be understood from the Gauss’s law

construction. The result suggests a method to describe
arbitrary Hall boundaries, the subject of Section 3. Figure and
4 shows a reference point on a specialized Neumann
boundary. The active computational region includes two E 5 rJ 2 KH(J 3 B) 5 2=f. (15)
triangles. The other four triangles are outside the bound-
ary. Consider application of Gauss’s law over the volume

Equation (14) expresses conservation of charge—theshown to find the relationship between vertex potentials.
quantity S is the source current per volume added or ex-The volume integral of space charge extends over the two
tracted at a point. Equation (15) relates the current densityinternal triangles. The surface integral of the normal elec-
vector to the electric field in the presence of a magnetictric field over these triangles proceeds in the same way as
field. The quantity r is the volume resistivity of the materialthe discussion above. There is no contribution over the
and KH is the Hall coefficient, which is a negative numberNeumann surface because the normal electric field is zero
when the majority carriers are electrons. Commercial Hallby definition. The important point is that the same relation-
probes usually have small thickness compared with theirship between the potentials F0 , F1 , F2 , and F3 would result
transverse dimensions. Therefore, a two-dimensional solu-if the surface integral extended over all six surrounding
tion of Eqs. (14) and (15) is adequate. Assuming that thetriangles, as long as qi and «i in the external triangles equal
probe lies in the x–y plane and taking B in the z-direction,zero. From this result, we can identify a convenient way
the component forms for Eq. (15) areto handle Neumann boundaries in a finite-element code

[22]. First, during mesh generation at least one layer of
dummy triangles is assigned outside the elements of the Ex

r
5 Jx 2 aJy (16)

computational region. Second, the space charge densities
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and The first bracketed term has a form similar to those en-
countered in the Gauss’s law treatment of Section 2. It
leads to expressions for the coupling coefficient like thoseEy

r
5 Jy 2 aJx , of Eq. (13) with the substitution

where a 5 KHB/r. Solving for the current density compo- «2 ⇒ c2 5
w2

r2(1 1 a2
2)

.
nents gives

The effect of a magnetic field is represented by the second
Jx 5

Ex 1 aEy

r(1 1 a2)
,

(17)
bracketed term in Eq. (20). Substituting for u and v from
Eq. (7), the term reduces to the simple expression

Jy 5
Ey 2 aEx

r(1 1 a2)
.

a2
F2 2 F1

2
. (21)

The finite-element equations for a Hall probe follow
from the integral form of Eq. (14) around the closed surface Again, the procedure is to add terms for the six surrounding
surrounding a sample mesh point shown in Fig. 2. The triangles and to solve for the reference potential F0 . The
surface integral of the normal component of J around the final result can be written as
curve equals one-third of the sum of the current added to
the surrounding triangular elements,

F0 5

O6
i51

ViFi 1 O6
i51

Ii

3

O6
i51

Wi

. (22)O6
i51

Ii

3
. (18)

There are no injection currents over most of the Hall probe The coupling coefficients are
volume. The quantities Ii are useful to represent the effect
of circuit loading. Current can be added to or extracted

W1 5
(c2 cot u2b 1 c1 cot u1a)

2
,from regions in the solution space that represent sensor

contacts.
? ? ? (23)In the linear approximation, the magnetic field is con-

stant over an element and the potential varies linearly.
W6 5

(c1 cot u1b 1 c6 cot u6a)
2

,This implies that the element current density is a constant.
We again concentrate on Triangle 2 of Fig. 2. The normal
integral of current density is and

EE J2 ? n dS 5
w2(J2 3 L)

z
. (19) V1 5

(c2 cot u2b 1 c1 cot u1a) 1 c2a2 2 c1a1)
2

,

? ? ? (24)Note that the layer height w2 is an element characteristic.
This enables modeling of Hall probes with spatially varying

V6 5
(c1 cot u1b 1 c6 cot u6a 1 c1a1 2 c6a6)

2
,thickness. Substitution of Eqs. (6) and (17) into Eq. (19)

gives a relationship for conservation of current in terms
of values of the electrostatic potential at the element verti- Equation (22) applies to internal regions of Hall probes
ces. The quantities r2 and a2 are also characteristic of with arbitrary spatial variations of magnetic field, resis-
the element, representing the spatial variation of volume tivity, Hall coefficient, and thickness. With no modification,
resistivity, Hall coefficient, and magnetic field. The right- the equation also describes generalized Hall boundaries
hand side of Eq. (19) becomes with curvature and variations of medium properties. The

treatment parallels that of the specialized Neumann
boundary in electrostatics. Here, the condition is that thew2

r2(1 1 a2
2) FF(y2 2 y1)u

2
2

(x2 2 x1)v
2 G

(20)
normal component of J is zero along the boundary. A Hall
boundary can be implemented simply by surrounding the
computational region with a layer of dummy triangles with1 a2 F(y2 2 y1)v

2
2

(x2 2 x1)u
2 GG.

ai 5 0 and ci 5 0. In this way, all points are treated as
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4. IMPLEMENTATION IN A NUMERICAL CODE

The method of Eq. (22) was integrated into a numerical
package for Hall probes design. The program can handle
up to 100,000 triangles. The adaptive mesh generator uses
a regular logic where six triangles surround each point.
Initially, a rectangular region is filled with triangles with
the option for variable resolution along the x and y axes.
The region includes an additional peripheral layer so that
there is at least one dummy triangle external to each active
element. The mesh is initialized so that all vertex points
are variable and all elements have a 5 0 and c 5 0. The
shapes of the probe and electrodes are defined by pro-
cessing a series of line segments and arcs. Vertex points
are moved so that triangle boundaries lie along the curves.

FIG. 5. Integration path for the total current flux away from a refer- Each set of geometric elements defines a region. The region
ence point on a Hall boundary. Triangles 1, 2, and 3 are part of the probe, number is assigned to vertex points along the boundary.
while Triangles 4, 5, and 6 are external. The Hall boundary lies on the If the region is closed, all internal vertices and elements
line from vertex 3 to 0 and vertex 0 to 6.

are marked with the region number. The mesh of Fig. 1
illustrates the procedure. Only active triangles are shown.
Region 1 includes the boundary of the Hall probe and theinternal points. The boundaries automatically satisfy Hall
interior elements. Regions 2 and 3 are lines along the leftconditions unless they are specified as Dirichlet bound-
and right sides of the mesh, while Regions 4 and 5 are thearies. In the limit a R 0, a Hall boundary approaches the
top and bottom contact pads. Defining the pad boundaryspecialized Neumann condition.
sets the region numbers of enclosed triangles to 4 or 5.The following construction gives insight into the mean-
After clamping vertices on the region boundaries, the posi-ing of Eq. (22). Figure 5 shows a reference point on the
tions of remaining vertices are relaxed to form the smoothHall boundary of a homogeneous medium. Triangles 1, 2,
mesh of Fig. 1a.and 3 are inside the medium while Triangles 4, 5, and 6

Material properties are defined in the field-solution pro-are outside. Application of Gauss’s law (Eq. (2)) around
gram. The program assigns constant properties over a re-the dashed line gives an equation that relates F0 to F1 ,

F2 , and F3 . Because there is no enclosed space charge,
the integral of normal electric field equals zero. If the
values of a and c are zero in the external triangles, then
we know from the discussion of Section 2 that the integral
around the curve in the internal triangles is

F0(W6 1 W1 1 W2 1 W3) 2 F6W6

2 F1W1 2 F2W2 2 F3W3 .

To do the integral along the boundary, note that the condi-
tion J' 5 0 implies that E' 5 aEi (Eq. (17)). The integral
of parallel electric field from Point a to Point 0 is (f3 2
f0)/2. Therefore, the integral of normal electric field over
the boundary from point a to point b is

Eb

a
E' ? ds 5

a(F3 2 F6)
2

. (25)

Gathering all terms in the integral and solving for F0 repli-
FIG. 6. Equipotential lines (0.25 mV interval) in a Hall probe withcates the result of Eq. (22). For a homogenous medium,

an irregular external boundary and internal void. Region 1, conductive
terms of the form (ci11ai11 2 ciai) in the expressions for material with Kh 5 23.0 3 1024 V ? cm/G ? A, r 5 0.1 V ? cm; region 2,
Vi cancel in adjacent triangles except for the points on the fixed potential, 0.0 mV; region 3, fixed potential, 10.0 mV; region 4, void

with r 5 1000 V ? cm.boundary, F3 and F6 .
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